Studies of the EPR g-Shift of $[Cr(CN)_6]^{3-}$ Clusters due to Crystal-Field and Charge-Transfer Mechanisms

Xiao-Xuan Wu^{a,c,d}, Wen-Ling Feng^{b,c}, Wang Fang^c, and Wen-Chen Zheng^{c,d}

a Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, P. R. China
b Department of Applied Physics, Chongqing Institute of Technology, Chongqing 400050, P. R. China
c Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
d International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Reprint requests to X.-X. W.; E-mail: wxxdd@163.com

Z. Naturforsch. **62a**, 218 – 220 (2007); received January 19, 2007

The EPR g-shift $\Delta g \approx g - g_e$ of the metal-cyanide cluster $[\text{Cr}(\text{CN})_6]^{3-}$ is calculated by high-order perturbation formulas based on both the crystal-field (CF) and charge-transfer (CT) mechanisms (the latter is often neglected in the crystal-field theory). The result agrees with the experimental value. The sign of the g-shift Δg_{CT} due to the contribution of the CT mechanism is opposite to that of Δg_{CF} due to the contribution of the absolute value of Δg_{CT} is about 34% of that of Δg_{CF} . It appears that for transition metal ions in a strong covalent cluster, a reasonable theoretical explanation of the g-shift should take both the CF and CT mechanism into account.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-Field Theory; Charge-Transfer Mechanism; Cr³⁺; [Cr(CN)₆]³⁻.